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Abstract

Mac Dowell da Costa, Antonio Maria Vasconcellos; Tomei, Car-
los (Advisor). Recovery of tridiagonal matrices
from spectral data. Rio de Janeiro, 2024. 46p. Dissertação de
Mestrado – Departamento de Matemática, Pontifícia Universidade
Católica do Rio de Janeiro.

Algorithms relating Jacobi matrices and spectral variables are standard
objects in numerical analysis. The recent discovery of bidiagonal coordinates
led to the search of an appropriate algorithm for these new variables. The new
algorithm is presented and compared with previous techniques.
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Resumo

Mac Dowell da Costa, Antonio Maria Vasconcellos; Tomei, Carlos.
Recuperação de matrizes tridiagonais a partir de dados
espectrais. Rio de Janeiro, 2024. 46p. Dissertação de Mestrado –
Departamento de Matemática, Pontifícia Universidade Católica do
Rio de Janeiro.

A identificação algorítmica de matrizes de Jacobi a partir de variáveis
espectrais é um tema tradicional de análise numérica. Uma nova representação,
as coordenadas bidiagonais, naturalmente exigiu que fosse considerado um
novo algoritmo. O algoritmo é apresentado e confrontado com as técnicas
habituais.
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Matrizes de Jacobi; Algoritmos Espectrais Inversos; Matrizes tridiago-

nais; Variedades Isoespectrais; Coordenadas Bidiagonais.
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Empty your mind, be formless, shapeless, like
water. If you put water into a cup, it becomes
the cup. You put water into a bottle and it
becomes the bottle. You put it in a teapot it
becomes the teapot. Now, water can flow or it
can crash. Be water, my friend.

Bruce Lee, The Pierre Berton Show, 1971.



1
Introduction

We consider the recovery of Jacobi matrices from spectral data [1–3]. Our
main theoretical tool is geometric — the identification of the closure of Jacobi
matrices with a special convex polytope, a permutohedron [4–6]. We consider
different types of spectral data and, from the identification above, we describe
regions of instability for each type.

Traditional spectral data associated with a Jacobi matrix consists of
its spectrum and first coordinates of appropriately normalized eigenvectors.
This choice is the discrete counterpart of the so called inverse variables for
the Schrödinger operator on the line with a decaying potential, and fits well
with some applications in numerical integration of functions [7]. Geometric
properties of such data are presented in Chapter 2 to keep the material self-
contained. In Chapter 3, we describe the celebrated RKPW (Rutishauser-
Kahan-Pal-Walker) algorithm, which retrieves a matrix from this spectral data.

From the geometric approach, two limitations of these standard variables
become evident. The first is the fact that they break down at reduced matrices
(i.e., matrices with some entry (i, i+1) equal to zero). The second is a stability
issue: small perturbations of the spectral data give rise to very different
matrices. These difficulties probably did not receive much attention due to the
fact that the RKPW algorithm always provides an answer. In particular, the
algorithm provides an (incorrect) output for incompatible data: a non-simple
spectrum implies that at least one of the first coordinates of eigenvectors is zero.
Yet, RKPW generates a tridiagonal symmetric matrix out of such spectrum
and nonzero first eigenvector coordinates.

In Chapter 4 we consider alternative spectral data, the bidiagonal coordi-
nates, introduced in [3]. Jacobi matrices form an open subset of the tridiagonal
isospectral manifold [4] and bidiagonal coordinates provide charts for the mani-
fold. Convergence issues of QR-type eigenvalue algorithms are reduced to local
theory [8, 9]. We present in Section 4.1 the basic theoretical information, in
preparation for the description of an algorithm in Section 4.2 which recovers
tridiagonal symmetric matrices from bidiagonal coordinates.

Finally, Chapter 5 provides examples and comparisons between both
algorithms. Both algorithms have distinct weak points, geometrically well
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indicated in figures 2.2 and 4.3. There is space for substantial improvement.

1.1
Notation

We denote by S the vector space of n× n real, symmetric matrices and
by J ⊂ S be the set of Jacobi matrices, more precisely, tridiagonal matrices
J ∈ S for which Ji,i+1 = Ji+1,i > 0, i = 1, . . . n−1. For a real diagonal matrix Λ
with simple spectrum, let the entries of λ = (λ1 = Λ11 < . . . < λn = Λnn) ∈ Rn

be its eigenvalues. The set JΛ consists of Jacobi matrices with spectrum λ. As
usual, JΛ ⊂ S is the closure of JΛ in S. Finally, TΛ ⊂ S is the set of tridiagonal
symmetric matrices with spectrum λ.

We denote by O(n) the orthogonal group, consisting of n×n matrices X,
such that XTX = I, the identity. The special orthogonal group SO(n) ⊂ O(n)
consists of orthogonal matrices with determinant one; Up+(n) is the group
of upper triangular matrices with strictly positive diagonal entries; Lo1(n) is
the group of lower triangular matrices with diagonal entries equal to one, and
finally E(n) ⊂ O(n) is the subgroup of signed diagonal matrices, consisting of
diagonal matrices with ±1 at its entries. The matrix dimension – the index n
– is frequently omitted.

Vector spaces are real, finite dimensional. Euclidean space Rn is endowed
with the standard inner product, with associated L2-norm denoted by ∥ · ∥.
We also denote by e1, e2, . . . , en the canonical vectors of Rn.



2
Geometry of Jacobi matrices

The starting point of this text is the geometry of Jacobi matrices, given
by different kind of coordinates, which in turn give rise to inverse algorithms
related to spectral data.

2.1
Jacobi matrices with fixed spectrum

We begin with a well known fact from linear algebra [2, 10].

Proposition 1. Jacobi matrices have simple spectrum. The first and last
coordinates of their eigenvectors are nonzero. Also, dropping the signs does
not change the spectrum.

Thus, for a Jacobi matrix J ∈ J , every eigenvalue λ has a unique
normalized eigenvector c with (strictly) positive first coordinates.

Theorem 1. [1, 2] A Jacobi matrix is determined by its spectrum and the
first coordinates of its appropriately normalized eigenvectors. Explicitly, set

M = {(λ, c) = (λ1, . . . , λn, c1, . . . , cn) | λ1 < . . . < λn and
∑

i

c2
i = 1, ci > 0}

and ψ : J → M , ψ(J) = (λ1, . . . , λn, c1, . . . , cn) = (λ, c), where λi and ci

denote the i-th smallest eigenvalue and the first coordinate of the associated
normalized eigenvector of J , respectively. Then ψ is a diffeomorphism.

The hardest part of the proof is the construction of the inverse map,
which we sketch. Let Λ be a diagonal matrix with entries given by λ and K be
the invertible matrix with columns c,Λc, . . . ,Λn−1c. By a standard argument
with Vandermonde determinants, K is invertible. The unique QR-factorization
of an invertible matrix then gives

K = QR, Q ∈ O(n), R ∈ Up+(n) .

Define J̃ = QT ΛQ. The required matrix J is obtained by dropping the signs
of the off-diagonal entries of J̃ .
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This (inverse) algorithm recovers Jacobi matrices from (λ, c), the eigen-
values and first coordinates of normalized eigenvectors. We will refer to vectors
c in the pair (λ, c) as Moser vectors. The algorithm is related to the Lanczos
method, essentially a Gram-Schmidt process with appropriate simplifications.

The inverse variables (λ, c) come up naturally in many contexts in
numerical linear algebra [1,11]. They are also discrete counterparts of the usual
inverse variables associated with the point spectrum of Schrödinger operators
— the Moser vector c plays the role of the familiar norming constants [12].

As we shall see in Section 2.2 (and especially Figure 2.2), the algorithm
is numerically unstable for coordinates ci’s close to zero, as the restriction to
a fixed spectrum

ψΛ : JΛ → C = {c ∈ Rn,
∑

i

c2
i = 1, ci > 0}

extends continuously to the closure JΛ but is not injective.

2.2
Reduced matrices and the permutohedron

From Theorem 1, the set JΛ ⊂ S is diffeomorphic to the positive octant
of the sphere in Rn, which is in turn diffeomorphic to Rn−1. We consider its
closure JΛ, starting with the case n = 3, where Λ = diag(λ1, λ2, λ3).

There are six diagonal matrices in JΛ, corresponding to the six per-
mutations of three symbols. The elements in the boundary of JΛ are reduced
matrices – at least one (hence two, by symmetry) off-diagonal entries are equal
to zero. For n = 3, the matrices in JΛ with entries (12) and (21) equal to zero
have one of its three eigenvalues in entry (11). Once such eigenvalue is fixed,
the block consisting of entries in rows and columns 2 and 3 has spectrum given
by the remaining two eigenvalues, and it is easy to see that such set is diffeo-
morphic to a half-circle, as entry (23) is greater or equal to zero, and negative
values for these entries correspond to the other half of the circle. In Figure 2.1,
three boundary arcs are labeled 0+, indicating that entries (12) and (21) are
zero and entries (23) and (32) are positive. Accordingly, diagonal and Jacobi
matrices are respectively labeled 00 and ++.

It is not surprising then (and the general case will be described later)
that the boundary ∂JΛ ⊂ S consists of a hexagon with curved sides. From
Theorem 1, non-reduced (Jacobi) matrices form a set diffeomorphic to R2, in
accordance with our final claim: JΛ is a closed hexagon.

We now consider the natural extension of the map ψΛ for reduced
matrices J ∈ ∂JΛ with spectral decomposition J = QT ΛQ, represented in
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D = diag(λ3, λ2, λ1)

F = diag(λ1, λ3, λ2)

C = diag(λ2, λ3, λ1)

+ +

00

00

00

00

00

00

A = diag(λ1, λ2, λ3)

0+ +0

0+

+00+

+0

λ3 0 0
0 a2 b2
0 b2 a3




a1 b1 0
b1 a2 0
0 0 λ3




a1 b1 0
b1 a2 0
0 0 λ1




λ1 0 0
0 a2 b2
0 b2 a3




a1 b1 0
b1 a2 0
0 0 λ2



E = diag(λ3, λ1, λ2)

B = diag(λ2, λ1, λ3)
λ2 0 0
0 a2 b2
0 b2 a3



Figure 2.1: A representation of the (topological) hexagon JΛ.

Figure 2.2. If the eigenvalue λi is in position (11), i.e., J is in a cell of the
form 0+, we must have c = ei, a canonical vector: the map extension of ψΛ

is not injective. Matrices of the form +0 are taken injectively to arcs where
some coordinate equals zero, as the reader can easily verify. Summarizing, the
extension ψΛ : JΛ → C is surjective, but not invertible.

e2

3

e1

e

A

B

D

E

F

+00+

0++0

0++0

+ +

C

ψΛ

Figure 2.2: The extension of the Moser map, ψΛ.

More generally, JΛ can be identified with the permutohedron PΛ ⊂ Rn,
the convex hull of the n! points (λπ(1), . . . , λπ(n)), where π ∈ Sn is a permutation
in n elements [13]. These points are indeed vertices of PΛ.

Theorem 2. [4–6] There is a homeomorphism from JΛ to PΛ which restricts
to a diffeomorphism between interiors.

In the original proof [4], both boundary and interior of JΛ are shown to
be PL-homeomorphic to the boundary and interior of the sphere Sn−1. The
result then follows from Schoenflies theorem, a generalization of the familiar
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Figure 2.3: The permutohedron, n = 4

Jordan theorem for curves in the plane. Later, Bloch, Flaschka and Ratiu [5]
obtained an explicit homeomorphism, which we now present.

For J ∈ JΛ, consider the spectral decomposition J = QT ΛQ, where Q is
well defined once we prescribe that its first column equals the Moser vector of
J . For Jacobi matrices, the BFR map is

BFR : JΛ → V = {v ∈ Rn |
∑

i

vi =
∑

i

λi}

J 7→ diag J̃ = diagQΛQT .

This map extends to JΛ: first coordinates may become zero, and the eigenvec-
tor normalization are known only up to sign, but this is innocuous – diagonal
entries of J̃ are well defined. The result then follows from the (nontrivial) in-
terpretation of the BFR map as a moment map of a Hamiltonian torus action
and then using a celebrated result of Atiyah [14]. Leite and Tomei [6] obtained
a simpler argument showing that the extension of the BFR map to JΛ indeed
satisfies the properties stated in Theorem 2. In Figure 2.4, we display the BFR
map, for n = 3. The labels A,B,C,D,E and F on the right represent the
images of the diagonal matrices denoted by the same symbols on the left. As
shown in [6] and indicated in the Figure, points of JΛ near reduced matrices
are mapped closer to the boundary of the hexagon PΛ.

The above theorem suggests different inverse variables for JΛ. Inversion,
however, is not explicit, requiring the inversion of polynomials of high degree.
Moreover, points in the boundary of the domain are critical, and the map
contracts to the boundary [6].

What about the Moser vector c for general reduced matrices J̃? A reduced
matrix splits into blocks associated with invariant subspaces generated by
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BFR
ϵ

A

B

C

D

E

F

A

B

E

D

C

F

2ϵ

Figure 2.4: The BFR map for n = 3. On the left, Figure 2.1.

canonical vectors. More concretely, if, say, J̃i,i+1 = J̃j,j+1 = 0, J̃ splits in three
(unreduced) blocks. For the first block, the first coordinates of the eigenvectors
are nonzero, but this is not the case of the subsequent blocks — injectivity
of J̃ ∈ JΛ 7→ c ∈ C breaks down. In particular, the Moser vector does
not provide a coordinate system which is injective in the neighborhood of
a diagonal matrix, as shown in Figure 2.2 for n = 3.

The arguments above keep λ fixed — can one say something about equal
eigenvalues? By Proposition 1, multiple eigenvalues imply that some entries
of c must be zero. In particular, the map J̃ ∈ J → C is neither injective or
surjective.

In Chapter 4, we describe bidiagonal coordinates which behave well locally
at any reduced matrix and for which the inverse algorithm is explicit.



3
Reconstruction from Moser variables — the RKPW algorithm

From Theorem 1, there is a bijection between Jacobi matrices and pairs
(λ, c) ∈ M. Its proof suggests a concrete inverse algorithm, but there is an
alternative with better stability properties [1]. Rather surprisingly, the RKPW
algorithm (for Rutishauser, Kahan, Pal and Walker) does not require the
simplicity of eigenvalues nor the positivity of the Moser vectors. But things
are not that simple, as we shall see – instability arises close to boundaries. We
first discuss the algorithm for (λ, c) ∈ M, then consider degenerate data.

3.1
Recovering Jacobi matrices

Recall that the entries of λ are strictly increasing. For λ, c ∈ Rn, denote
by λk and ck the k-th entries of λ and c, and by λk and ck the vectors of the
first k entries, respectively. The RKPW algorithm is inductive: to obtain a
Jacobi matrix Jk associated with (λk, ck), suppose that Jk−1 associated with
(λk−1, ck−1) is known.

Consider the auxiliary (k + 1) × (k + 1) matrix

S =


1 ∥ck−1∥eT

1 ck

∥ck−1∥e1 Jk−1 0
ck 0 λk

 . (3-1)

Clearly S is real, symmetric, but the corner entries (1, k + 1) and
(k+1, 1) spoil tridiagonality. As we shall see, a sequence of (k−1) appropriate
conjugations of S by Givens rotations1 chase the bulge introduced by the corner
entries, yielding a matrix

J̃ =
 1 ∥ck∥eT

1

∥ck∥e1 Jk

 .
Repeating the process, eventually one obtains the required J = Jn.

There are three things to show:
1Let Pij be the plane with (ordered) basis ei, ej , i < j. A Givens rotation Gij(θ) ∈ SO

is a rotation of θ on Pij , which is equal to the identity on the orthogonal complement of Pij .
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(1) J is tridiagonal (Proposition 3).
(2) J has inverse variables (λ, c) (Proposition 2).
(3) J is a Jacobi matrix (Proposition 4).

Proposition 2. Fact (1) implies (2).

The proof requires essentially no detailed knowledge of the Givens
rotations leading to J̃ .

Proof. Suppose that Jn−1 is the Jacobi matrix associated with variables
(λn−1, cn−1) and that from the sequential conjugations,

J̃ =
 1 ∥c∥eT

1

∥c∥e1 Jn

 = G̃TSG̃,

where Jn = J is tridiagonal and

G̃ =
1 0

0 G

 (3-2)

with G being a product of Givens transformations. Write

Jn = QT
n ΛnQn, Jn−1 = Qn−1Λn−1Qn−1, Q̂n−1 =

Qn−1

1

 ,

for orthogonal matrices Qn−1 and Qn with the first having strictly positive
entries in its first column. We then have

J̃ =
 1 ∥c∥eT

1

∥c∥e1 Jn

 = G̃TSG̃ =
1 0

0 GT




1 ∥cn−1∥eT
1 cn

∥cn−1∥e1 Jn−1 0
cn 0 λn


1 0

0 G



=


1

(
∥cn−1∥eT

1 cn

)
G

GT

∥cn−1∥e1

cn

 GT Q̂T
n−1 Λn Q̂n−1G

 .

so that

∥c∥e1 = GT

∥cn−1∥e1

cn

 and QnE = Q̂n−1G ,

for some signed diagonal matrix E ∈ E , as Λn has simple eigenvalues. Clearly,
the eigenvalues of J = Jn are the entries of λ, as Λn = diag(λ1, . . . , λn). We
now consider the Moser vector:

Qne1 = Q̂n−1GE e1 = ±Q̂n−1Ge1 = ± 1
∥c∥

cn−1

cn

 = ± c

∥c∥
. (3-3)



Chapter 3. Reconstruction from Moser variables — the RKPW algorithm 20

Properly normalizing Qn and the Moser vector c, the matrix J has (λ, c) as its
inverse variables.

Proposition 3. [1] There is a sequence of Givens rotations leading to a
symmetric, tridiagonal matrix J̃ .

Proof. We describe the inductive step from Jk−1 to Jk. Conjugate S defined in
equation 3-1 by a Givens rotation in the plane P2,k+1 to obtain a zero in entry
(1, k + 1) of the resulting matrix S(1) = GT

2,k+1 S G2,k+1. Set

Jk−1 =



a1 b1

b1 a2
. . .

. . . . . . bk−2

bk−2 ak−1


and write γ = cos θ, σ = sin θ. Then

S(1) =



1 −ckσ + ∥ck−1∥γ 0 0 . . . 0 ckγ + ∥ck−1∥σ
−ckσ + ∥ck−1∥γ γ2a1 + σ2λk γb1 0 . . . 0 γσ(a1 − λk)

0 γb1 a2 b2 0 σb1

0 0 b2 a3
. . . ...

... ... . . . . . . bk−2 0
0 0 0 bk−2 ak−1 0

ckγ + ∥ck−1∥σ γσ(a1 − λk) σb1 . . . 0 0 σ2a1 + γ2λk


,

(3-4)
from which we determine θ (or better, its sine and cosine) such that

ckγ + ∥ck−1∥σ = 0 . (3-5)

For the solutions ±θ ∈ [0, 2π),

γ = ± ∥ck−1∥√
∥ck−1∥2 + (ck)2

, σ = ∓ ck√
∥ck−1∥2 + (ck)2

. (3-6)

We choose θ so that the (12) entry of S(1) is positive,

−ckσ + ∥ck−1∥γ = ∥ck∥ .

Therefore, as γ and σ have opposite signs and ck > 0, θ should be chosen
so that its cosine is greater or equal to zero (and its sine less or equal). To
summarize, after the first conjugation, we obtain
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S(1) =



1 ∥ck∥ 0 0 . . . 0 0
∥ck∥ γ2a1 + σ2λk γb1 0 . . . 0 γσ(a1 − λk)

0 γb1 a2 b2 0 σb1

0 0 b2 a3
. . . ...

... ... . . . . . . bk−2 0
0 0 0 bk−2 ak−1 0
0 γσ(a1 − λk) σb1 . . . 0 0 σ2a1 + γ2λk


, (3-7)

A second conjugation replaces bulges at entries (2, k+1) and (3, k+1) by bulges
at (3, k + 1) and (4, k + 1). Repeat the process, bringing down the bulges in
the last column (and last row), until reaching J̃ .

We illustrate the initial steps, for convenience. Clearly J1 = λ1, regardless
of the value of c1. To find J2 out of (λ2 = (λ1 < λ2), c2 = (c1, c2)), apply one
conjugation by a rotation G2,3:

S =


1 c1 c2

c1 λ1 0
c2 0 λ2

 7→ J̃ =


1 ∥c2∥ 0

∥c2∥ ∗ ∗
0 ∗ ∗

 =
 1 ∥c2∥eT

1

∥c2∥e1 J2



For the step (λ2, c2) 7→ (λ3, c3), start with S having J2 in its central
block, indicated by asterisks. Apply Givens conjugations G2,4 and G3,4, the
former mixing rows and columns 2 and 4 and the latter 3 and 4, obtaining J̃ ,
with J3 in its lower principal 3 × 3 block:

S =


1 ∥c2∥ 0 c3

∥c2∥ ∗ ∗ 0
0 ∗ ∗ 0
c3 0 0 λ3

 7→


1 ∥c3∥ 0 0

∥c3∥ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 7→ J̃ =


1 ∥c3∥ 0 0

∥c3∥ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗


For any x ∈ R, we write x̃ for some number very close to x, where we quantify
the deviation as we proceed with the text. A matrix M̃ has all its entries close
to the entries of M .

We need a lemma.

Lemma 1. Define the (n+ 1) × (n+ 1) tridiagonal symmetric matrix

S(0) =


1 ∥cn−1∥eT

1 0
∥cn−1∥e1 Jn−1 0

0 0 λn

 ,
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associated with eigenvalues λ = (λn−1, λn) and Moser vector c(0) = (cn−1, 0).
Let S(ϵ) be the (unique) Jacobi matrix associated with λ and c(ϵ) = (cn−1, ϵ)
obtained from Theorem 1. Then, for ϵ = 0̃ > 0, we have S(ϵ) = S̃(0).

Proof. We follow the construction outlined after Theorem 1. The matrix K(ϵ)
with columns c(ϵ),Λc(ϵ), . . . ,Λn−1c(ϵ) is invertible, unless ϵ = 0, for which its
last row consists of zeros. Still, one obtains a smooth QR-factorization, where
the last column of Q is simply a vector orthogonal to the previous columns,
i.e., the canonical vector en+1. Thus, the RKPW algorithm is continuous as
ϵ → 0: the result then follows.

We finally prove (3): J is indeed a Jacobi matrix:

Proposition 4. For the pair (λ, c) ∈ M as in Theorem 1, the matrix J = Jn

obtained by the RKPW algorithm is Jacobi.

Proof. Denote the nontrivial entries of the Givens rotations by γ = cos θ and
σ = sin θ. For the transition (λ1, c1) 7→ (λ2, c2) we have


1 0 0
0 γ −σ
0 σ γ




1 c1 c2

c1 λ1 0
c2 0 λ2




1 0 0
0 γ σ

0 −σ γ



=


1 ∥c2∥ 0

∥c2∥ γ2λ1 + σ2λ2 γσ(λ1 − λ2)
0 γσ(λ1 − λ2) σ2λ1 + γ2λ2


Since γ = c1

∥c2∥ > 0, σ = −c2
∥c2∥ < 0 and λ1 < λ2, the off-diagonal term

b1 = γσ(λ1 − λ2) is strictly positive, as entries of λ are increasing.
The inductive argument handles the transition Jn−1 7→ Jn, where we

assume that Jn−1 is Jacobi.
Embed the matrix Jn−1 in S(0) of Lemma 1. To show that for cn > 0,

RKPW obtains a Jacobi matrix Jn embedded in S(ϵ) it suffices to consider
small cn, by continuity: if cn > 0 is arbitrary and Jn is not Jacobi, then there
exists some ϵ < c̃n < cn for which RKPW takes (λ, c = (c1, . . . , c̃n)) to a
reduced matrix J̃ . But this is absurd, since a reduced matrix must have some
entry of its Moser vector equal to zero.

Again by continuity, it suffices to prove the result for a Moser vector of
the form c = (1̃, ϵ2, . . . , ϵn), where ϵi = 0̃ > 0. Taking ϵi small allows us to
freely use expressions like ‘x is of order ϵ’. From the definition 3-1,
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S =



1 1̃ 0 0 . . . 0 ϵn

1̃ λ̃1 b1 0 . . . 0 0
0 b1 λ̃2 b2 0 0
0 0 b2 λ̃3

. . . ... 0
... ... . . . . . . bn−2

...
0 0 0 . . . bn−2 λ̃n−1 0
ϵn 0 0 . . . 0 0 λn


, (3-8)

where bi = 0̃ > 0.
We start bring down the bulge along the last column. From equation 3-6,

γ = 1̃ and σ = 0̃ (and negative). From 3-7, for 2 ≤ i ≤ n, G2,i+1 = Ĩ (where I
is the identity matrix) and the new bulges are given by

δ
(1)
+ = γσ(λ̃1 − λn) > 0 and δ

(1)
− = σb1 < 0 .

Notice that b̃1 = γb1 is still strictly positive.

S(1) =



1 1̃ 0 0 . . . 0 0
1̃ λ̃1 b̃1 0 . . . 0 δ

(1)
+

0 b̃1 λ̃2 b2 0 δ
(1)
−

0 0 b2 λ̃3
. . . ... 0

... ... . . . . . . bn−2
...

0 0 0 . . . bn−2 λ̃n−1 0
0 δ

(1)
+ δ

(1)
− 0 . . . 0 λ̃n


We show that subsequent Givens conjugations bring down the bulges,

preserving their signs, until the bottom bulge disappears and the upper
(positive) bulge becomes the entry bn−1 of Jn. We proceed by proving that
intermediate conjugations — by Gk,n+1 — "pushes" the bulges δ(k−1)

+ and δ(k−1)
−

at entries (k, n + 1) and (k + 1, n + 1) of the matrix S(k−1) to δ(k)
+ and δ

(k)
− at

positions (k + 1, n+ 1) and (k + 2, n+ 1) of S(k), respectively.

Split S(k−1) (of dimension n + 1) into nine blocks by partitioning rows
and columns into three sets of sizes k − 1, 2, n− k, as follows:

S(k−1) =


J̃k−2 A 0
AT B C

0 CT Zk+1,n

 ,
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where

J̃k−2 =



1 1̃
1̃ λ̃1 b̃1

b̃1 λ̃2
. . .

. . . . . . b̃k−3

b̃k−3 λ̃k−2


, A =


0 0
... ...
0 0
b̃k−2 0

 ,

B =
λ̃k−1 bk−1

bk−1 λ̃k

 , C =
 0 0 . . . 0 δ

(k−1)
+

bk 0 . . . 0 δ
(k−1)
−


and

Zk+1,n =



λ̃k+1 bk−1

bk−1 λ̃k+2
. . .

. . . . . . bn−2

bn−2 λ̃n−1

λ̃n


.

Split Gk+1,n+1 into blocks of the same size,

Gk+1,n+1 =


I 0 0
0 D E

0 −ET Ĩ


where

D =
1 0

0 γ

 , E =
0 . . . 0 0

0 . . . 0 σ

 , Ĩ =
I

γ

 .
Again, γ = 1̃, σ = 0̃ < 0. Multiplying on the right (resp. left) by Gk+1,n+1

mixes columns (resp. rows) k + 1 with n+ 1. We obtain

S(k) =


J̃k−2 A 0
AT B̃ X

0 XT Y

 ,

where

B̃ =
λ̃k−1 b̃k−1

b̃k−1 λ̃k

 , X =
 0 0 . . . 0 0
b̃k 0 . . . 0 δ

(k)
+


and

Y =



λ̃k+1 bk−1 δ
(k)
−

bk−1 λ̃k+2
. . .

. . . . . . bn−2

bn−2 λ̃n−1

δ
(k)
− λ̃n


.
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Now, δ(k)
− = σbk and δ

(k)
+ = γσ(λ̃k − λ̃n) + O(ϵ2) have the desired signs, and

b̃i ≈ bi > 0 for i = 1, . . . , n− 2. After n− 2 conjugations,

S(n−2) =



1 1̃
1̃ λ̃1 b̃1

b̃1 λ̃2
. . .

. . . . . . b̃n−2 δ
(n−2)
+

b̃n−2 λ̃n−1 δ
(n−2)
−

δ
(n−2)
+ δ

(n−2)
− λ̃n


.

A straightforward computation verifies that bn−1 = J̃n+1,n = S
(n−1)
n+1,n > 0.

Notice that the argument above uses the fact that eigenvalues are ordered
increasingly. Different orderings however, would not have great impact on the
result of the algorithm: the only change would be in the sign of off-diagonal
entries, as the sing of δ(k)

+ in the proof above depends on such orderings. This
is an appropriate moment to say something about signed Jacobi matrices.

3.1.1
Signed Jacobi matrices

A matrix Js is a signed Jacobi matrix if there is a signed diagonal matrix
E ∈ E such that EJsE is Jacobi. Said differently, dropping the signs of the
off-diagonal entries of Js obtains a Jacobi matrix. Similarly, one may think of
an input vector cs with arbitrary signs, but it makes no sense to think of it as
a Moser vector: the first entries of eigenvectors of a Jacobi matrix are not well
defined, and a Moser vector is the choice of positive such entries.

Still, one can rather artificially define a correspondence between vectors
cs with nonzero entries for which the last (or any other) coordinate (cs)n > 0,
and signed Jacobi matrices, simply by requiring equality of the signs of (cs)i

and Js
i+1,i, i = 1, . . . , n− 1.

The RKPW algorithm handles this extension in a simple fashion. Define
a signed Givens rotation to be a matrix of the form γ −σ

−σ −γ

 .

Appropriate choices between standard and signed Givens rotations in the
algorithm of the previous section gives rise to signed Jacobi matrices with
arbitrary choices of sign of off-diagonal entries. Details are left to the reader.
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3.1.2
Reduced matrices

We consider limits of Moser vectors c with non-negative entries.

Proposition 5. Let Λ = diag(λ1 < . . . < λn) and c ̸= 0 with non-negative
entries. Let I = {i | ci = 0}, with k = |I|. Then RKPW yields a symmetric
tridiagonal matrix

Jc =


Ĵn−k 0

0 λi1 0
0 . . . 0

0 λik

 ,

where Ĵn−k is the Jacobi matrix associated with λ̂ = λ \ {λi, i ∈ I} and
ĉ = (cj)n−k

j=1 , with j /∈ I. Said differently, the eigenvalues λi, i ∈ I, are pushed
to the bottom of the resulting (reduced) matrix.

Proof. Assume first that only entry ck is zero. At the k-th step of the algorithm
(i.e., at the transition (λk−1, ck−1) 7→ (λk, c

k)), the auxiliary matrix S is already
tridiagonal, and therefore all the Givens rotations leading from Jk−1 to Jk are
equal to the identity, so that

Jk =
Jk−1 0T

0 λk

 (3-9)

For the next step, in which ck+1 ̸= 0, rotations are nontrivial and the last
one, Gk+1,k+2, is a signed permutation: its (k + 1, k + 2) block is

0 −1
1 0

 .

From a straightforward calculation,

G̃T


1 ∥ck∥eT

1 ck+1

∥ck∥e1 Jk 0
ck+1 0T λk+1

 G̃ =


1 ∥ck+1∥eT

1 0
∥ck+1∥e1 Ĵk 0

0 0T λk



=
 1 ∥ck+1∥eT

1

∥ck+1∥e1 Jk+1

 .

In the subsequent steps, RKPW pushes λk to the bottom of the matrix. More
generally, if there are other zero coordinates cr = 0, the same argument, in
which some Givens rotations are taken to be equal to the identity, leads to a
matrix with λk and λr at its bottom, as we wanted to show.
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From the proposition above, only faces of PΛ corresponding to isolated
eigenvalues on the bottom of the reduced matrix are obtained by RKPW. Thus,
no face labeled 0+ in Figure 2.1 is in the image of the inverse algorithm. Also,
not every matrix close to a diagonal matrix is identifiable with some signed
vector cs. Again, the lack of continuity of the map (λ, c) 7→ T is clear.

3.1.3
Equiasymptotic sequences

Following [6, 15], we answer the following question: which sequences of
n × n Jacobi matrices Tk converge to a given reduced matrix? The issue will
be relevant when we consider stability of both RKPW and IVBI.

A sequence of vectors ck = (ck
1, . . . , c

k
n) ∈ Rn admits an equiasymptotic

partition if and only if there is an ordered partition of

{1, 2, . . . , n} = ∪i Ii

such that for iα ∈ Iα and iβ ∈ Iβ, the quotient ck
iβ
/ck

iα
goes to zero when k → ∞

if α < β or to a nonzero real number if α = β. Thus, two indices α and β in the
same subset Ii label entries of ck that have comparable asymptotic behavior.
Also, the entries indexed by Ii+1 decrease to zero faster than the ones indexed
by Ii. As an example, for c ∈ R5, we represent the partition

{1, 2, 3, 4, 5} = {1, 3, 4} ∪ {2} ∪ {5}

by the sequence [2, 1, 2, 2, 0], in order to suggest that entries c1, c3 and c4 are
asymptotically larger than entry c2 which in turn is larger than c5.

Clearly not every sequence ck admits such a split, but it is easy to prove
that there is always a subsequence ckℓ admitting an equiasymptotic partition.

For n = 3, there are 13 equiasymptotic classes:

[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1],

[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0] .

In Figure 3.1 below, we associate classes and cells for n = 3. It may be
interpreted as a refinement of the information in Figure 2.2.

There is an analogous result – an identification of equiasymptotic parti-
tions with cells of the permutohedron – for arbitrary dimensions.
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[0,0,0]

C

[0,1,1]

[1,0,1]

[0,1,0]
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E

DB

[2,0,1]

[1,0,0]

[1,1,0] [0,0,1]

[1,0,2][2,1,0]

[1,2,0]

[0,2,1]

[0,1,2]

+0

0+ +0

0+

+00+

Figure 3.1: Equiasymptotic partitions and their limits.

3.1.4
Multiple spectrum

By Proposition 1, multiple eigenvalues imply that some entries of c must
be zero. In particular, a point (λ, c) with non-simple λ and strictly positive
Moser vector c does not belong to the image of the extension of the Moser
map from J to M.

Still, the algorithm generates an output. For Λ = diag(2, 2, 4, 5, 5) and
c = (1, 1, 1, 1, 1), RKPW yields

J =



18
5

√
46
5√

46
5

381
115

6
√

5
23

6
√

5
23

94
23

2
5


.

As seen in the example, again for a non-simple spectrum, the algorithm pushes
the repeated eigenvalues to the bottom of the matrix, as in Proposition 5. The
proof follows a similar argument: at some point, non-simplicity implies that
δ

(k)
− = 0. Which in turn, forces Gk+1,n to be a signed permutation, and so on.

One should be careful about meaningless outputs.

Moser vectors are frequently taken as coordinates in the study of spectral
algorithms on Jacobi matrices and evolutions of physical interest, as the
Toda flow [16]. It is desirable then to look for other coordinates systems
with additional properties: they might include reduced matrices and be local
diffeomorphisms, in particular around diagonal matrices. In the next chapter,
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we introduce the isospectral manifold and propose a new inverse algorithm,
corresponding to handling charts.



4
Reconstruction from bidiagonal coordinates — INVBI

The set TΛ of all tridiagonal symmetric matrices with a fixed simple
spectrum is actually a manifold, obtained by appropriately gluing 2n−1 copies
of the permutohedron PΛ, each corresponding to a choice of signs on the off-
diagonal entries [4]. For n = 3, four hexagons after identifications yield a
connected sum of two tori – a bitorus, endowed with the CW-decomposition
given in the figure below. Let A = diag(λ1, λ2, λ3), B = diag(λ2, λ1, λ3) and so
on, so that each of the six diagonal matrices A,B,C,D,E and F correspond
to its proper permutation of eigenvalues, as in Figure 2.1.

F

A B

E D

C

ED

C

B

C

D E E D

CF

+− ++

−+−−

Figure 4.1: Edges with same color and same corner eigenvalue are identified.

In Section 4.1, we provide a smooth atlas for TΛ, proving that it is indeed
a manifold. It turns out that the isospectral tridiagonal manifold is always
compact, orientable and its universal covering is Rn+1 [4].

The new inverse algorithm in Section 4.2 is a constructive inversion of
these charts.

4.1
Bidiagonal charts

Again, let Λ = diag(λ1, λ2, . . . , λn), where eigenvalues are in strictly
increasing order. Recall the usual QR decomposition of an invertible matrix
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A

A B

B C D

C D

E F

FE

−+

++

Figure 4.2: Glue the edges of the complex properly to obtain the bitorus.

M = QR, for which we define

[M ]Q = Q ∈ O(n) , [M ]R = R ∈ Up+(n) .

We say a matrix M is LU-positive if it admits a (necessarily unique) LU
decomposition M = LU , where

[M ]L = L ∈ Lo1(n) , [M ]U = U ∈ Up+(n) .

Equivalently, an invertible matrix M is LU-positive if and only if its principal
upper minors are positive.

Let Sn be the group of permutations of n elements. For π ∈ Sn, set

Λπ = diag(λπ(1), . . . , λπ(n)) .

Notice that Λπ = PΛP T for a (unique) permutation matrix P . For T ∈ TΛ,
a diagonalization T = QT ΛQ yields another,

T = QTP TPΛP TPQ = QT
π Λπ Qπ ,

where Qπ ∈ O(n) is not necessarily in SO(n).

Now, fix a permutation π ∈ Sn and define the chart domain

Uπ
Λ = {T ∈ TΛ | T = QT ΛπQ, where Q is LU-positive} .

The following properties are easy to verify [3].

1. If T = QT ΛπQ is such that Q has nonzero principal minors, then T ∈ Uπ
Λ.

2. The sets Uπ
Λ ⊂ TΛ form an open cover of TΛ.
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3. If E ∈ E (i.e., E is a diagonal of signs) and T ∈ Uπ
Λ, then ETE ∈ Uπ

Λ.

4. If T ∈ TΛ is unreduced, then T ∈ Uπ
Λ for all π ∈ Sn. In particular, each

Uπ
Λ is dense in TΛ.

As an example, the interior of the polygon in Figure 4.1 is the chart Uπ
Λ

for the identity permutation.

We now introduce the charts. For T ∈ Uπ
Λ, set

T = QT
π Λπ Qπ.

Since Qπ = Lπ Uπ, Lπ ∈ Lo1, Uπ ∈ Up+, we have

T = U−1
π L−1

π Λπ LπUπ .

Set
Bπ = UπTU

−1
π = L−1

π ΛπLπ. (4-1)
Notice that Bπ is bidiagonal, since UπTU

−1
π is upper Hessenberg1 while

L−1
π ΛπLπ is lower triangular,

Bπ =



λπ(1)

βπ(1) λπ(2)

βπ(2) λπ(3)
. . . . . .

βπ(n−1) λπ(n)


(4-2)

Define charts — the bidiagonal coordinates,

ϕπ : Uπ
Λ → Rn−1 , T 7→ Bπ

We frequently abuse notation and call bidiagonal coordinates the vector
βπ = (βπ(1), . . . , βπ(n−1)) . Notice the conceptual similarity between βπ and the
Moser vector c (which is less sensible to reordering of eigenvalues: different
orderings can change the sign of the bottom off-diagonal entry of the resulting
matrix from RKPW, as shown in Proposition 4). As in Theorem 1 for Moser
vectors, the inverse map is obtained from the QR-decomposition of Lπ:

ψπ : Rn−1 → Uπ
Λ

(βπ(1), . . . , βπ(n−1)) 7→ [Lπ]TQ Λπ [Lπ]Q
1A matrix M is upper Hessenberg if all entries (i, j), i ≥ j + 2, are zero.
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Theorem 3. The map ψπ : Rn−1 → Uπ
Λ is a diffeomorphism, with inverse

ϕπ : Uπ
Λ → Rn−1.

Clearly, the maps ψπ and ϕπ = ψ−1
π are smooth. Dropping the reference

to the permutation π and setting differences of eigenvalues as δij = λj − λi,
there is an explicit diagonalization of Bk = L−1

k ΛkLk, obtained in [3],

Lk =



1
β1

δ1,2
1

β1β2
δ1,3δ2,3

β2
δ2,3

1
... ... . . . . . .

β1β2...βk−1
δ1,kδ2,k...δk−1,k

β2...βk−1
δ2,k...δk−1,k

. . . βk−1
δk−1,k

1


, (4-3)

L−1
k =



1
β1

δ2,1
1

β1β2
δ2,1δ3,1

β2
δ3,2

1
... ... . . . . . .

β1β2...βk−1
δ2,1δ3,1...δk,1

β2...βk−1
δ3,2...δk,2

. . . βk−1
δk,k−1

1


, (4-4)

yielding a concrete description of the map ψπ. However, the computational
cost is overwhelming, and an alternative is suggested in the next section.

As in [17], we can see that given any T = [L]TQΛ[L]Q ∈ Uπ
Λ, its Moser

vectors and bidiagonal coordinates are related by

c1 = 1√
1 + β2

1
δ2

12
+ . . .+ β2

1 ...β2
k−1

δ2
1k

...δ2
k−1k

, ci = c1
β1 . . . βi−1

δ1i . . . δi−1,i

, 2 ≤ i ≤ k (4-5)

β1 = δ12c2

c1
, βi = δ1,i+1 . . . δi,i+1ci+1

δ1i . . . δi−1,ici

, 2 ≤ i ≤ k − 1 , (4-6)

for the Moser vector associated with T is the first column of [L]Q, which is just
the first column of L (given in 4-3) divided by its norm.

Figure 4.3 below indicates points of latent instability. On the left, the
closure of Jacobi matrices with a fixed spectrum is represented by the hexagon
ABCDEF . On the right, the possible values of the bidiagonal coordinates
β = (β1, β2) are given in a square, where two sides correspond to choosing some
coordinate equal to +∞. As matrices approach edges CD and DE, not in the
domain of ϕπ, their images approach a single asymptotic behavior (+∞,+∞).

Sequences of matrices Tk admitting equiasymptotic partitions were de-
scribed in terms of the Moser vector c in Section 3.1.3. A simple translation to
bidiagonal coordinates, using the formulas converting c into β, yields Figure
4.4, a counterpart to Figure 3.1.
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++

F

A E

C

B D

ϕπ ++

∞

∞
β1

A B

E, D, C

0
0

F

β2

Figure 4.3: The β coordinates of JΛ.
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[∞, 0]

[0,∞]

[∞,+]

[∞, 0]

[∞, 0]

Figure 4.4: Labels [β1 ∼ c2/c1, β2 ∼ c3/c2].

4.2
INVBI – a counterpart to RKPW for bidiagonal coordinates

We search for an inverse map (λπ, βπ) ∈ Bπ 7→ T ∈ Uπ
Λ, where

Bπ = {(λπ, βπ) = (λπ(1), . . . , λπ(n), βπ(1), . . . , βπ(n−1)) | λπ(i) ̸= λπ(j), βπ(i) ∈ R},

in the spirit of RKPW. We omit the reference to π: the orthogonal matrices
Q below are always LU-positive.

As RKPW, the algorithm is inductive: the matrix Tk associated with
Bk = (λk, βk−1), is obtained from Tk−1, associated with Bk−1 = (λk−1, βk−2).
The relations below hold for any Tk ∈ UΛk

with coordinates (λk, βk−1):

Tk = QT
k ΛkQk , Qk ∈ O(k), (4-7)

Qk = LkUk , Lk ∈ Lo1(k) , Uk ∈ Up+(k), (4-8)

Bk = L−1
k ΛkLk = UkTkU

−1
k . (4-9)

We prepare for the algorithm. Clearly, Lk is obtained from Lk−1 by
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adjoining a last row and column,

Lk =
 Lk−1 0

−ℓTLk−1 1

 ,

where the vector ℓ ∈ Rk−1 is defined in

L−1
k =

L−1
k−1 0
ℓT 1

 .

Set

Q̂ =
Qk−1 0

0 1

 , Û =
Uk−1 0

0 1

 , L̂ =
Lk−1 0

0 1

 ,
so that L−1

k L̂ is a rank one perturbation of the identity. We retrieve Tk from
the auxiliary matrix

S = Û−1 Bk Û (4-10)

=
U−1

k−1 0
0 1

 Bk−1 0
βk−1e

T
k−1 λk

Uk−1 0
0 1

 =
 Tk−1 0
βk−1e

T
k−1Uk−1 λk

 .

Combining with equation 4-9,

Tk = U−1
k Û S Û−1Uk = Ũ−1S Ũ (4-11)

where Ũ = Û−1Uk. We describe a procedure to obtain Ũ and its inverse.

Set
M = Û−1(L−1

k L̂)Û

=
U−1

k−1 0
0 1

 L−1
k−1 0
ℓT 1

 Lk−1 0
0 1

 Uk−1 0
0 1

 =
 I 0
ℓTLk−1Uk−1 1

 ,

also a rank one perturbation of the identity. Recall that a positive definite
matrix P has a unique Cholesky decomposition P = LLT , where L ∈ Lo+.

Proposition 6. The matrix Ũ−T is the lower triangular factor in the Cholesky
decomposition of (MMT )−1.

Clearly (MMT )−1 is positive definite.
Proof. As Qk = LkUk and Q̂ = L̂Û , we have LkUkQ

T
k = L̂ÛQ̂T (= I) . A

simple algebra obtains

Û−1UkQ
T
k = Û−1L−1

k L̂ÛQ̂T ,
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and, as Ũ = Û−1Uk,
M = ŨQT

k Q̂ . (4-12)
so that (MMT )−1 = Ũ−T Ũ−1. Finally, as Ũ = Û−1Uk, and both Û−1 and Uk

have positive diagonal entries, so does Ũ−T .

For vT = ℓTLk−1Uk−1 = ℓTQk−1, the last row of M is (vT , 1) ∈ Rk. The
required Cholesky decomposition only depends on v:

MMT =
 I v

vT ∥v∥2 + 1

 = Ũ ŨT , (4-13)

(MMT )−1 =
I + vvT −v

−vT 1

 = Ũ−T Ũ−1 . (4-14)

The next proposition describes Ũ−1 in terms of v. Again, vi and vi denote
the vector of first i entries and i-th entry of the vector vT = (v1, . . . , vk−1),
respectively. For consistency, set v0 = v0 = 0. Let ni =

√
∥vi∥2 + 1. Observe

that n0 = 1 and nk−1 = ∥vk−1∥2 + 1 = ∥v∥2 + 1.

Proposition 7. The lower triangular matrix W = Ũ−T in the Cholesky
decomposition (MMT )−1 = WW T is

W =



n1
v1v2
n1

n2
n1

v1v3
n1

v2v3
n1n2

n3
n2... ... . . . . . .

v1vk−1
n1

v2vk−1
n1n2

v3vk−1
n2n3

. . . vk−2vk−1
nk−2nk−3

nk−1
nk−2

−v1
n1

−v2
n1n2

−v3
n2n3

. . . −vk−2
nk−2nk−3

−vk−1
nk−1nk−2

1
nk−1


.

More explicitly,

Wij = (Ũ−T )ij =



ni

ni−1
, i = j ̸= k

vjvi

nini−1
, j < i < k

−vi

nini−1
, j < i = k

1
nk−1

, i = j = k

.

Proof. From equation 4-14,

(MMT )−1 =



1 + v2
1 v1v2 . . . v1vk−1 −v1

v1v2 1 + v2
2

. . . ... ...
... . . . . . . vk−2vk−1 −vk−2

v1vk−1 . . . vk−2vk−1 1 + vk−1 −vk−1

−v1 . . . −vk−2 −vk−1 1


.
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Let w(i) be the i-th row of W . Thus W = Ũ−T is equivalent to

(1) ⟨w(i), w(j)⟩ = vivj, ∀i ̸= j ∈ {1, . . . , k − 1}
(2) ⟨w(i), w(i)⟩ = 1 + (vi)2, ∀i ∈ {1, . . . , k − 1}
(3) ⟨w(i), w(k)⟩ = −vi, ∀i ∈ {1, . . . , k − 1}
(4) ⟨w(k), w(k)⟩ = 1.

Suppose i < j. In the inner product ⟨w(i), w(j)⟩, only the i first entries
are possibly nonzero and we may collect vivj:

⟨w(i), w(j)⟩ = vivj

(
v2

1
n2

1
+ v2

2
n2

1n
2
2

+ v2
3

n2
2n

2
3

+ . . .+ v2
i−1

n2
i−1n

2
i−2

+ 1
n2

i−1

)
(4-15)

We prove by induction on i that K, the sum of the terms between
parentheses above, equals one. Let F be the sum of the first i− 1 terms of K.
Start with i = 3: ⟨w(3), w(j)⟩ = v3vj. Indeed, the sum has only the same three
terms for all j > 3,

K3 = v2
1
n2

1
+ v2

2
n2

1n
2
2

+ 1
n2

2
= F3 + 1

n2
2

=
(
v2

1
n2

1
+ v2

2
n2

1n
2
2

)
+ n2

1
n2

1n
2
2

=
(
v2

1
n2

1
+ v2

2
n2

1n
2
2

)
+ v2

1 + 1
n2

1n
2
2

= v2
1n

2
2 + (v2

2 + v2
1 + 1)

n2
1n

2
2

= v2
1n

2
2 + n2

2
n2

1n
2
2

= 1 .

We mimic the steps above. As n2
i = v2

1 + v2
2 + . . .+ v2

i + 1, we have

n2
i + v2

i+1 = n2
i+1 . (4-16)

Now, suppose by induction that

Ki−1 = v2
1
n2

1
+ v2

2
n2

1n
2
2

+ v2
3

n2
2n

2
3

+ . . .+ v2
i−2

n2
i−2n

2
i−3

+ 1
n2

i−2
= Fi−1 + 1

n2
i−2

= 1 .

and then we must prove that Ki = 1, where

Ki = v2
1
n2

1
+ v2

2
n2

1n
2
2

+ v2
3

n2
2n

2
3

+ . . .+ v2
i−1

n2
i−1n

2
i−2

+ 1
n2

i−1
= Fi−1 + v2

i−1
n2

i−1n
2
i−2

+ 1
n2

i−1
.

From equation 4-16 and the inductive hypothesis,

Ki = Fi−1 + v2
i−1 + n2

i−2
n2

i−1n
2
i−2

= Fi−1 + 1
n2

i−2
= 1 ,

which implies (1). For (3), set vj = −1, and (4) is straightforward. For (2),

⟨w(i), w(i)⟩ = v2
1v

2
i

n2
1

+ . . .+ n2
i

n2
i−1
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= v2
i

(
v1

n2
1

+ . . .+ v2
i−1

n2
i−2n

2
i−1

)
+ v2

1 + . . .+ v2
i−1 + v2

i + 1
n2

i−1

= v2
i

(
v1

n2
1

+ . . .+ v2
i−1

n2
i−2n

2
i−1

+ 1
n2

i−1

)
+ v2

1 + . . .+ v2
i−1 + 1

n2
i−1

= v2
iKi + n2

i−1
n2

i−1
= v2

i + 1

Actually, we need much less then the full matrices Ũ and Ũ−1. According
to equation 4-11, since Tk is symmetric and tridiagonal, we only need diagonal
and super-diagonal entries of the k × k matrices Ũ and Ũ−1, with indices (ii)
and (i, i+ 1). Such entries of Ũ are easily expressed in terms of the analogous
entries of Ũ−1, as shown in the example below for k = 3:

Ũ−1 =


a b ∗

d e

f

 ⇒ Ũ =


1/a −b/ad ∗

1/d −e/df
1/f

 (4-17)

Thus, the algorithm only needs entries

(Ũ−1)ii =


ni

ni−1
=
√

∥vi∥2+1
∥vi−1∥2+1 , i = 1, . . . , k − 1

1
nk−1

= 1√
∥v∥2+1

, i = k
(4-18)

(Ũ−1)i,i+1 =


vivi+1
nini−1

= vivi+1√
(∥vi∥2+1)(∥vi−1∥2+1)

, i = 1, . . . , k − 2
−vk−1

nk−1nk−2
= −vk−1√

(∥v∥2+1)(∥vk−2∥2+1)
, i = k − 1 .

(4-19)

We now obtain v.

Proposition 8. The vector v satisfies the linear system

(Tk−1 − λkI)v = uk−1βk−1ek−1 , (4-20)

where

uk−1 = ∥eT
k−1L

−1
k−1∥ =

√√√√ β2
1 . . . β

2
k−2

δ2
12 . . . δ

2
1,k−1

+ . . .+ β2
k−2

δ2
k−2,k−1

+ 1 . (4-21)

Proof. From equation 4-9, we have L−1
k Λk = BkL

−1
k . Equating bottom rows,

(ℓT , 1)Λk = (βk−1e
T
k−1L

−1
k−1, 0) + (λk ℓ

T , λk) ,

which implies that

ℓT = βk−1e
T
k−1L

−1
k−1(Λk−1 − λk)−1 (4-22)
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so that, as vT = ℓTLk−1Uk−1 = ℓTQk−1,

vT = βk−1e
T
k−1Uk−1Q

T
k−1(Λk−1 − λk)−1Qk−1

= uk−1βk−1e
T
k−1(Tk−1 − λk)−1 ,

where uk−1 = (Uk−1)k−1,k−1 is the bottom entry of Uk−1. From equation 4-8,
Uk−1U

T
k−1 = L−1

k−1L
−T
k−1 and, equating the bottom right entries,

uk−1 = ∥eT
k−1L

−1
k−1∥.

The expression for uk−1 in terms of bidiagonal coordinates follows from the
formula for L−1

k−1, equation 4-4.

Applying the above propositions to equation 4-11, we are led to the out-
come of INVBI, the inverse algorithm associated with bidiagonal coordinates.

Theorem 4. The nontrivial entries of Tk are

(Tk)ii = ai =



Ũ11

(
(Ũ−1)11 (Ũ−1)12

)S11

S12

 , for i = 1

(
(Ũ−1)ii (Ũ−1)i,i+1

)Si−1,iŨi−1,i + SiiŨii

Si+1,iŨii

 , ∀i ∈ {2, . . . , k − 1}

(Ũ−1)kk

(
Sk,k−1 Skk

)Ũk−1,k

Ũkk

 , for i = k.

(4-23)

(Tk)i,i+1 = (Tk)i+1,i = bi = (Ũ−1)i+1,i+1Si+1,iŨii, ∀i ∈ {1, . . . , k − 1}. (4-24)

In summary, the inductive step of INVBI proceeds as follows.

(1) Compute uk−1 as in formula 4-21.
(2) Build the auxiliary matrix S.
(3) Solve the system (Tk−1 − λk)v = uk−1βk−1ek−1.
(4) Obtain relevant entries of Ũ−1 and Ũ from equations 4-18 and 4-19.
(5) Compute the entries ai and bi of Tk, according to 4-23 and 4-24.

Suppose bidiagonal data (λ, β) is given and we want to recover T =
Tk. We compute the first steps of the algorithm explicitly, for the reader’s
convenience. Clearly, T1 = λ1 and u1 = 1, so the auxiliary matrix is

S =
λ1 0
β1 λ2

 .
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Solve the 1 × 1 linear system (λ1 − λ2)v = β1, obtaining v = β1
δ21

. We have

Ũ−1 =


√

β2
1+δ2

21
|δ21|

−β1√
β2

1+δ2
21

0 |δ21|√
β2

1+δ2
21

 , Ũ =


|δ21|√
β2

1+δ2
21

β1√
β2

1+δ2
21

0
√

β2
1+δ2

21
|δ21|

 ,

T2 = Ũ−1SŨ =
λ1 − β2

1δ21
β2

1+δ2
21

β1δ2
21

β2
1+δ2

21
β1δ2

21
β2

1+δ2
21

λ2 + β2
1δ21

β2
1+δ2

21

 .

To find T3, we must solve (T2 − λ3)v = β2u2e2, i.e.,

λ1 − λ3 − β2
1δ21

β2
1+δ2

21

β1δ2
21

β2
1+δ2

21
β1δ2

21
β2

1+δ2
21

λ2 − λ3 + β2
1δ21

β2
1+δ2

21

v1

v2

 =

 0

β2

√
β2

1
δ2

21
+ 1

 .

As k increases, longer combinations of β’s by δij appear on the algorithm.
Relative sizes may induce concerns on the stability of the algorithm. The
formulas (and Figure 4.3) suggest that data closer to a diagonal matrix
associated with λ are more stable.

4.2.1
Computing uk−1

According to equation 4-21, the computation of uk−1 requires the knowl-
edge of βi’s and differences of eigenvalues δij = λj − λi,

uk−1 =

√√√√ β2
1 . . . β

2
k−2

δ2
12 . . . δ

2
1,k−1

+ . . .+ β2
k−2

δ2
k−2,k−1

+ 1 .

From formula 4-4, uk−1 is the norm of the last row of L−1
k−1. This leads to

a recursive definition in terms of the last row of L−1
k−2. Let

ℓ̂ =
(

β1...βk−3
δ12...δ1,k−2

β2...βk−3
δ23...δ2,k−2

. . . βk−3
δk−3,k−2

1 1
)T

= (eT
k−2L

−1
k−2, 1) ∈ Rk−1 .

The entries of (ℓ, 1) — the last row of L−1
k — are obtained by multiplying the

entries of ℓ̂ by the k numbers

βk−2

δ1,k−1
, . . . ,

βk−2

δk−2,k−1
, 1 ,

then we obtain uk−1 by taking the norm of the resulting vector.
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4.2.2
Solving the tridiagonal system

Let α = βk−1uk−1, already computed. We consider the (k − 1) × (k − 1)
tridiagonal system (Tk−1 − λk)v = αek−1, where

Tk−1 =



a1 b1

b1 a2 b2

b2 a3
. . .

. . . . . . bk−2

bk−2 ak−1


, (4-25)

For purposes of inversion, we may suppose α = 1. Gaussian elimination —
essentially the LU decomposition of (Tk−1−λk) — is a possibility among many.
Recall that, in this case, L is lower bidiagonal with ones along the diagonal,
and U is upper bidiagonal [11]. If the eigenvalues are in strictly increasing or
decreasing order, (Tk−1 − λk) has invertible principal minors, by interlacing.
More precisely, λk is not in the smallest interval I containing the remaining
eigenvalues, and by interlacing the minors have spectrum contained in I.

A possible source of loss of precision is the subtraction Tk−1−λk. this may
be circumvented by an appropriate shift strategy, such that only differences
δij are used in the algorithm up to the very end, when some eigenvalue must
be added to the outcome.

This system is endowed with a rare property: we know the spectrum of
the associated matrix. Unfortunately, we were not able to obtain an alternative
algorithm from this fact.



5
Comparing the algorithms, numerical examples

We initially test both RKPW and INVBI with the canonical example:
the discretization of the second order derivative on functions in an interval sat-
isfying Dirichlet conditions. Without real loss, we perform minor modifications
on this matrix. Concretely, the n× n matrix

M =



0 1
1 0 1

1 0 . . .
. . . . . . 1

1 0


has eigenvalues and associated normalized eigenvectors

λk = 2 cos
(

kπ

n+ 1

)
, uk =

√
2√

n+ 1


sin( kπ

n+1)
sin( 2kπ

n+1)
...

sin( knπ
n+1)

 .

The Moser vector of M is

cT =
√

2√
n+ 1

(
sin( π

n+1) sin( 2π
n+1) . . . sin( nπ

n+1)
)
.

The bidiagonal coordinates β are obtained from c using formula 4-6.
We run RKPW and INVBI for dimensions n = 10, 50, 100 and 500.

The eigenvalues were presented in increasing order, and INVBI used the LU
decomposition to solve the linear system. We compare the time of execution in
seconds and three measures of error with respect to M : the largest deviation
among diagonal entries, ϵd; the largest deviation among off-diagonal entries,
ϵoff ; the sum of all deviations of diagonal and subdiagonal entries, ϵt. The
results are recorded in table below.
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n Time ϵd ϵoff ϵt

10 0.008 2.05391 × 10−15 8.88178 × 10−16 1.12895 × 10−14

50 0.725 2.39808 × 10−14 6.21724 × 10−15 2.43282 × 10−13

RKPW 100 3.030 4.06341 × 10−14 2.68674 × 10−14 1.04737 × 10−12

500 71.602 2.61457 × 10−13 1.32338 × 10−13 2.35667 × 10−11

1000 286.953 5.34017 × 10−13 2.54907 × 10−13 9.04898 × 10−11

10 0.007 1.27675 × 10−15 6.66133 × 10−16 7.96585 × 10−15

50 0.375 5.74258 × 10−15 3.10862 × 10−15 9.44603 × 10−14

INVBI 100 1.393 1.03929 × 10−14 4.10782 × 10−15 2.87122 × 10−13

500 35.295 2.91766 × 10−13 5.93969 × 10−14 4.03024 × 10−12

1000 145.206 1.12206 × 10−13 8.17124 × 10−14 9.91484 × 10−12

We now give an example of how slightly different Moser vectors can
generate very different matrices out of RKPW. For Λ = diag(1, 2, 4), the Moser
vectors c = (0, 1, 0) and c̃ = (0, 1.00001, 0.00001) we obtain

T =


2

1
4

 , T̃ =


2.0000000002 1.99998 × 10−5 0

1.99998 × 10−5 3.9999999998 0
0 0 1.0

 .

This result is predicted by the analysis of stable sequences in [15].
Finally, we show the instability of the INVBI algorithm for differ-

ent asymptotic classes [β1, β2], illustrated in Figures 4.3 and 4.4. For Λ =
diag(1, 2, 4), we consider three cases: (104, 10−5) ∼ [∞, 0], (104, 10−1) ∼ [∞,+]
and (104, 104) ∼ [∞,∞], with outputs


1.99999999000556 0.00010005553913244 0

0.00010005553913244 1.00332964378459 0.0998890127057464
0 0.0998890127057464 3.99667036620985




2.00055539127465 0.0333242266451282 0
0.0333242266451282 3.99941758646916 0.00900116874515525

0 0.00900116874515525 1.00002702225619




3.99999928000025 0.00119999958150015 0
0.00119999958150015 2.00000069749975 0.000150000023624997

0 0.000150000023624997 1.0000000225

 .

Switching the order of the β coordinates yields approximations of the
remaining three diagonal matrices.
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5.0.0.1
Python code

The algorithms in this work were implemented using Python,
and a notebook with the code and all experiments mentioned above
is available at https://colab.research.google.com/drive/13jcKEnB_
Au20QtlBws5HZDJsV3K-m5ep?usp=sharing.

https://colab.research.google.com/drive/13jcKEnB_Au20QtlBws5HZDJsV3K-m5ep?usp=sharing
https://colab.research.google.com/drive/13jcKEnB_Au20QtlBws5HZDJsV3K-m5ep?usp=sharing
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